Comparative Metagenomics of Freshwater Microbial Communities

C. Hemme^{1,2}, Y. Deng^{1,2}, Q. Tu^{1,2}, M. W. Fields³, T. J. Gentry⁴, L. Wu^{1,2}, S. G. Tringe⁵, D. B. Watson⁶, Z. He^{1,2}, T. C. Hazen⁷, J. M. Tiedje⁸, E. Rubin⁵, J. Zhou^{1,2}

1 Univ. of Oklahoma. Norman. OK. ²Inst. for Environmental Genomics. Norman. OK. ³Montana State Univ., Bozeman. MT. ⁴Texas A&M Univ., College Station, TX. ⁵Joint Genome Inst. Production Genomics Facility. Walnut Creek. CA. ⁶Oak Ridge Natl. Lab., Oak Ridge, TN, ⁷Lawrence Berkeley Natl. Lab., Berkeley, CA, ⁸Michigan State Univ., East Lansing, MI.

Ecosystems and Networks Integrated with Genes and Molecular Assemblies

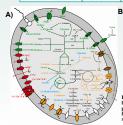
http://vimss.lbl.gov/

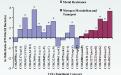
Introduction

resulting from the rapid introduction of multiple contaminants. Effects include a massive loss of species and strain biod esistant genes in the metagenome and lateral transfer of toxin resistance genes between community members. To bette

the data of the da arbon source for the community. FW301 appears to be capable of CO2 fixation via the reductive carboxylase (reverse TCA) cycle and possibly cetogenesis, activities; these activities are lacking in the heterotrophic FW106 system which relies exclusively on respiration of nitrate and/or oxygen for coduction. Polyalo encodes a complete set of B12 biosynthesis pathway at high abundance suggesting the use of sodium gradients for energy on in the healthy groundwater community.

Commarative and its suggests the introduction of contaminants is accommanied by a decrease in biodiversity, loss of nutrient cycling. lee


Fig. 1. A) Geographic location of sampling wells FW106 and FW301. B) Model of contaminant flow from the former S-3 waste disposal ponds. C) Photo of former S-3 waste disposal ponds.


FRC Groundwater Geochemistry

	FW300	FW106
pH	~7	~3.7
Nitrate (mg/L)	1.5	2331
Sulfate (mg/L)	6.3	1997
Uranium (mg/L)	>0.0001	51
Technetium-99 (pCi/L)		3700
1,2-Dichloroethene (µg/mL)	5	1153
Tetrachloroethene (µg/mL)	5	810
1-Butanol (µg/mL)		475
Acetone (µg/mL)	10	823
Benzoic Acid (µg/mL)	-	1400
Sodium (mg/L)	2.96	826
Chloride (mg/L)	1.125	465
Magnesium (mg/L)	2.58	45.7

FRC Metagenome Statistics

	FW106	FW301	Minnesota Farm Soil	Lake Washington Sediment (combined)	
Total Bases	9554544	106573620	152406385	211470570	
DNA Coding # Bases	8076611	84170988	97186775	173300284	
DNA G+C # Bases	6011119 (63.20%)	60905616 (57.16%)	85978723 (57.65%)	123326011 (58.34%)	
Scaffolds	5698	126845	135347	241455	
Total # Genes	12420	170521	185274	323777	
I6S rRNA	3	51	25	64	
Genes w/ Function Prediction	3689 (69.96%)	86161 (50.53%)	80680 (43.55%)	185893 (57.41%)	
Genes Assigned to Enzymes	1692 (13.62%)	53901 (31.61%)	21907 (14.44%)	16775 (5.19%)	
Genes Assigned to KEGG Pathways	1423 (11.46%)	44007 (25.81%)	18310 (9.88%)	14000 (4.32%)	
Genes in COGs	7961 (64.10%)	85262 (50.00%)	85014 (45.89%)	174344 (53.85%)	

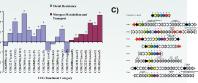


Fig. 1. A) Consensus genome of dominant phylotype FW1067l with key metabolic pathways labeled as follows; green, central carbon metabolism; blue, organic solvent degradation; orange, plf resistance; red, heavy metal resistance; town, infrogen metabolism. B) Overabundance of heavy metal resistance genes and deintification genes in FW106 metagenome. C) Abundance and diversity of mercuric resistance genes in FW106 metagenome.

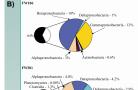


Fig. 3. A) PCA analysis of 42 aquatic metagenomes based on COG profiles demonstrating similarities in COG profiles of FRC and Lake Washington samples. B) Abundance of carbon monoxide dehydrogenase genes in

Function	Name	AMD LW MF FW30 FW10
	COG1969	NiFe hydrogenase I cytochrome h subunit
AMD	COG1290	Cytochrome b subunit of he complex
	COG4736	chb ₃ cytechrome oxidase subunit 3
	COG3303	Formate-dependent nitrite reductase periplasmic cytochrome $c_{\rm ecc}$ subunit
MFS	COG3005	Nitrate/TMAO reductase membrane-bound tetraheme cytochrome c subunit
FW301	COG5274	Cytochrome 8 involved in lipid metabolism
	COG4654	Cytochrome c _{ato} c _{ato}
	COG3909	Cytochrome c ₁₈₆
	COG3658	Cytochrome b
	COG3245	Cytochrome c_1
	COG3125	Heme/Copper-type cytechnome/quinel oxidase subunit 4
	COG3038	Cytochrome b _{sst}
	COG2993	elb ₁ cytechrome exidase, cytechrome subusit
	COG2863	Cytochrome c ₁₀
	COG2193	BacterioSerretin (cytochrome h ₁₎
	COG2010	Cytochrome e monoheme diheme varients
	COG2009	Succinate dehydrogenase/lumarate reductase cytochrome h subunit
FW106	COG1291	Cytochrome hd quinel exidase subunit 2

Function ID	Name	AMD	LW	S	9 W 30 1	FW10 6
COGI319	Aerobic-type CODII, CoxM/CutM homologs	2	84	60	49	0
COG1529	Aerobic-type CODII, CoxL/Cutl. homologs	8	390	199	250	4
COG2880	Aerobic-type CODII, CoxS/CutS subunit	3	139	60	71	1
COG1152	CODIL/Acetyl-CoA synthuse, e-subunit	2	5		0	
COG1614	CODB/Acetyl-CoA synthuse, \$\beta\subunit	0	12	1	0	
COG2869	CODIL/Acetyl-CoA synthuse, &-subunit	0	4	1	1	
COG1456	CODB/Acetyl-CoA synthuse, y-subunit	0	18	3	0	
COG3640	CODM maturation factor (CODM nickel-insertion accessory protein CooC)	1	10	1	1	
COG1151	6Fe-6S prismane cluster-containing protein (CODH catalytic subunit CoeS)	1	19		0	
COG1142	Fe-S-cluster-containing hydrogenase components 2 (CODM Fe-S subunit CooF)	0	13	2	3	
COG1975	Xanthine and CODH Maturation factor, XdbC/CoxF Family	3	79	34	34	3

Table 1. A) Abundance of cytochromes in FW106, FW301, soil (MFS) and acid mine drainage (AMD). Cytochrome c_{SO} is highly abundant in FW106 and may contribute to heavy metal resistance. B) Abundance of carbon monoxide dehydrogenase genes in various metagenomes.

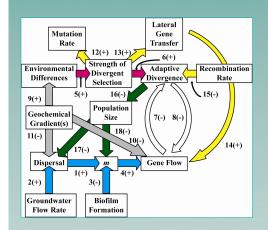


Fig 4. Model of gene flow and adaptive divergence in contaminated groundwater systems. Adapted from Raisinea and Headys, 2008, as refers to the proportional migrant population, "-- signs indicate positive and negative effects, respectively. Colored arrows are as follows: Cam, anternal-soccurring factors in divergence; while, feedback loop between gene flow and adaptive devegence; grey, factors affecting gene flow and adaptive divergence grey, factors affecting gene flow and adaptive divergence and gene flow; atternally-occurring and stress-related genetic and genomic factors affecting gather divergence and gene flow.

- FRC groundwater communities are dominated by proterobacterial species
- Introduction of strong geochemical gradients drastically reduce species, strain and metabolic diversity, leading to reduced nutrient turnover, increased nutrient loss, increased community respiration and increased lateral transfer of geochemical resistance genes
- A strong geochemical gradient may act as a lens do reduce biodiversity, limit gene flow and increase the odds of emergence of adaptive strains.

ACKNOWLEDGEMENTS

ENIGMA is a Scientific Focus Area Program supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics: GTL Foundational Science through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy.